
EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2003 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. CWA 14050-28:2003 D/E/F

CEN

WORKSHOP

AGREEMENT

CWA 14050-28

October 2003

ICS 35.200; 35.240.40

English version

Extensions for Financial Services (XFS) interface specification -
Release 3.02 - Part 28: Cash In Module Device Class Interface -

Migration from Version 3.00 to Version 3.02 - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United
Kingdom.

CWA 14050-28:2003 (E)

2

 Table of Contents

Foreword... .. 3

1. Introduction.. .. 5

1.1 Background to Release 3.02.. 5

1.2 References 5

2.0 New Chapters.. 6

3.0 New Info Commands 7

3.1 WFS_INF_CIM_GET_P6_INFO.. 7

3.2 WFS_INF_CIM_GET_P6_SIGNATURE ... 7

4.0 Changes to existing Info commands... 9

4.1 WFS_INF_CIM_CAPABILITIES 9

4.2 WFS_INF_CIM_CASH_UNIT_INFO... 11

5. New Execute Commands.. 16

5.1 WFS_CMD_CIM_CREATE_P6_SIGNATURE ... 16

6.0 Changes to existing Execute commands.. 18

6.2 WFS_CMD_CIM_CASH_IN 18

6.3 WFS_CMD_CIM_CASH_IN_ROLLBACK.. .. 19

6.4 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS ... 20

7. New Events.. 21

7.1 WFS_EXEE_CIM_INPUT_P6: .. 21

7.0 Changes to existing Events.. 22

8.0 New ATM Cash-In Transaction Flows... 23

8.1 OK Transaction P6 23

9.0 Changes to existing ATM Cash In Transaction Flows 24

9.1 OK Transaction.. 24

9.2 Cancellation by Customer 24

9.3 Stacker becomes full.. 25

9.4 Bill recognition error 26

9.5 Implicit Control Of the Shutter by the Service Provider – OK Transaction ... 27

9.6 Implicit Control Of the Shutter by the Service Provider – RollBack... 28

9.7 Implicit Control Of the Shutter– WFS_EXEE_CIM_SUBCASHIN event .. 29

9. C - Header file.. 30

CWA 14050-28:2003 (E)

3

Foreword

This CWA is revision 3.02 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2003-05-21. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.02.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.00
(see CWA 13449) to Version 3.00 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this CWA) -
Programmer's Reference

Part 18: Identification Card Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00
(see CWA 14050-4:2000; superseded) - Programmer's Reference

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (see
CWA 14050-6:2000; superseded) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00
(this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.00 (see CWA 13449) to
Version 3.01 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this CWA) -
Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

CWA 14050-28:2003 (E)

4

Part 26: Identification Card Device Class Interface - Migration from Version 3.00 (see CWA 14050-4:2000;
superseded) to Version 3.02 (this CWA) - Programmer's Reference

Part 27: PIN Keypad Device Class Interface - Migration from Version 3.00 (see CWA 14050-6:2000; superseded) to
Version 3.02 (this CWA) - Programmer's Reference

Part 28: Cash In Module Device Class Interface - Migration from Version 3.00 (see CWA 14050-15:2000; superseded)
to Version 3.02 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a complementary
document, called Release Notes. The Release Notes contain clarifications and explanations on the CWA specifications,
which are not requiring functional changes. The current version of the Release Notes is available online from
http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS makes
no warranty, express or implied, with respect to this document.

CWA 14050-28:2003 (E)

5

1. Introduction

1.1 Background to Release 3.02

The CEN XFS Workshop is a continuation of the Banking Solution Vendors Council workshop and maintains a
technical commitment to the Win 32 API. However, the XFS Workshop has extended the franchise of multi vendor
software by encouraging the participation of both banks and vendors to take part in the deliberations of the creation of
an industry standard. This move towards opening the participation beyond the BSVC's original membership has been
very successful with a current membership level of more than 20 companies.

The fundamental aims of the XFS Workshop are to promote a clear and unambiguous specification for both service
providers and application developers. This has been achieved to date by sub groups working electronically and
quarterly meetings.

The move from an XFS 3.00 specification to a 3.02 specification has been prompted by customer demand for support of
ECB Article 6 legislation to deal with handling of forgery and suspected forgery notes. To do cash recycling in Europe
there are requirements defined in article 6 how to deal with money that is a forgery or might be a forgery.
The bank notes are classified in levels. The following levels are defined at the moment:

- level1: no bank note
- level2: forgery
- level3: possibly a forgery
- level4: real money

A signature is a unique identifier for a bank note. It is used together with the transaction data like an account number to
identify the customer who has deposited this banknote.

The clear direction of the XFS Workshop, therefore, is the delivery of a new Release 3.02 specification based on a C
API. It will be delivered with the promise of the protection of technical investment for existing applications and the
design to safeguard future developments. All XFS 3.00 CIM clarifications apply to this document.

1.2 References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.00, October 18, 2000
2. ISO 4217 at http://www.iso.ch
3. XFS Cash Dispenser Device Class Interface, Programmer’s Reference, Revision 3.00, October 18, 2000
4. Paragraph 6 of the EU council regulation 1338/2001

Terms of reference for the adaptation of paragraph 6 on cash in and cash recycling machines
(18.04.2002)

CWA 14050-28:2003 (E)

6

2.0 New Chapters

There are no new chapters

CWA 14050-28:2003 (E)

7

3.0 New Info Commands

3.1 WFS_INF_CIM_GET_P6_INFO

Description This command is used to get information about the number of level 2 / level 3 notes on the
intermediate stacker and the number of created level2 / level 3 signatures.

Input Param None.

Output Param: LPWFSCIMP6INFO *lppP6Info
Pointer to a null terminated array of pointers to p6Info structures. One structure for every level.

typedef struct _wfs_cim_P6_Info
{

USHORT usLevel;
LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
USHORT usNumOfSignatures;

} WFSCIMP6INFO, *LPWFSCIMP6INFO;

usLevel
Defines the note level. Possible values are:
Value Meaning
WFS_CIM_LEVEL_2 Information for level 2 notes.
WFS_CIM_LEVEL_3 Information for level 3 notes.

lpNoteNumberList
List of banknote types that were recognised as level x notes. If the pointer is NULL, no level x
notes were recognised. For a description of the WFSCIMNOTENUMBERLIST structure see the
definition of the command WFS_INF_CIM_CASH_UNIT_INFO.

usNumOfSignatures
Number of level x signatures of this cash in transaction. If it is zero no signatures are available.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

3.2 WFS_INF_CIM_GET_P6_SIGNATURE

Description This command is used to get one specific signature.

Input Param LPWFSCIMGETP6SIGNATURE lpGetP6Signature;

typedef struct _wfs_cim_get_P6_signature
{

USHORT usLevel;
USHORT usIndex;

} WFSCIMGETP6SIGNATURE, *LPWFSCIMGETP6SIGNATURE;

usLevel
Defines the level of the wanted signature. Possible values are:
Value Meaning
WFS_CIM_LEVEL_2 The application wants a level 2 signature.
WFS_CIM_LEVEL_3 The application wants a level 3 signature.

usIndex
Specifies the index (0 to usNumOfLevelxSignatures-1) of the required signature.

Output Param LPWFSCIMP6SIGNATURE lpP6Signature;

typedef struct _wfs_cim_P6_signature
{

USHORT usNoteId;
ULONG ulLength;
DWORD dwOrientation;
LPVOID lpSignature;

} WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

CWA 14050-28:2003 (E)

8

usNoteID
Identification of note type.

ulLength
Length of the signature in bytes.

dwOrientation
Orientation of the entered banknote. Specified as one of the following flags:
Value Meaning
WFS_CIM_ORFRONTTOP If note is inserted wide side as the leading edge, the note

was inserted with the front image facing up and the top
edge of the note was inserted first. If the note is inserted
short side as the leading edge, the note was inserted with
the front image face up and the left edge was inserted
first.

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the leading edge, the note
was inserted with the front image facing up and the
bottom edge of the note was inserted first. If the note is
inserted short side as the leading edge, the note was
inserted with the front image face up and the right edge
was inserted first.

WFS_CIM_ORBACKTOP If note is inserted wide side as the leading edge, the note
was inserted with the back image facing up and the top
edge of the note was inserted first. If the note is inserted
short side as the leading edge, the note was inserted with
the back image face up and the left edge was inserted
first.

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the leading edge, the note
was inserted with the back image facing up and the
bottom edge of the note was inserted first. If the note is
inserted short side as the leading edge, the note was
inserted with the back image face up and the right edge
was inserted first.

WFS_CIM_ORUNKNOWN The orientation for the inserted note can not be
determined

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine the orientation

lpSignature
Pointer to the returned signature.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments The application has to call this command multiple in a loop to get all signatures.

CWA 14050-28:2003 (E)

9

4.0 Changes to existing Info commands

4.1 WFS_INF_CIM_CAPABILITIES

Description This command is used to retrieve the capabilities of the cash acceptor.

Input Param None.

Output Param LPWFSCIMCAPS lpCaps;

typedef struct _wfs_cim_caps
{
WORD wClass;
WORD fwType;
WORD wMaxCashInItems;
BOOL bCompound;
BOOL bShutter;
BOOL bShutterControl;
BOOL bSafeDoor;
BOOL bCashBox;
BOOL bRefill;
WORD fwIntermediateStacker;
BOOL bItemsTakenSensor;
BOOL bItemsInsertedSensor;
WORD fwPositions;
WORD fwExchangeType;
WORD fwRetractAreas;
WORD fwRetractTransportActions;
WORD fwRetractStackerActions;
LPSTR lpszExtra;
} WFSCIMCAPS, * LPWFSCIMCAPS;

wClass
Supplies the logical service class. Value is:
WFS_SERVICE_CLASS_CIM

fwType
Supplies the type of CIM as one of the following values:
Value Meaning
WFS_CIM_TELLERBILL The CIM is a Teller Bill Acceptor.
WFS_CIM_SELFSERVICEBILL The CIM is a Self Service Bill Acceptor.
WFS_CIM_TELLERCOIN The CIM is a Teller Coin Acceptor.
WFS_CIM_SELFSERVICECOIN The CIM is a Self Service Coin Acceptor.

wMaxCashInItems
Supplies the maximum number of items that can be accepted in a single cash in operation. Normally
reflects hardware limitations of the device.

bCompound
Specifies whether or not the logical device is part of a compound physical device and is either
TRUE or FALSE.

bShutter
If this flag is true explicit shutter control through the commands
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER is supported.

bShutterControl
If set to TRUE the shutter is controlled implicitly by the service provider. If set to FALSE the
shutter must be controlled explicitly by the application using the
WFS_CMD_CIM_OPEN_SHUTTER and the WFS_CMD_CIM_CLOSE_SHUTTER commands.
This field is always set to TRUE if the device has no shutter. This field applies to all shutters and
all output positions.

bSafedoor
Specifies whether the WFS_CMD_CIM_OPEN_SAFE_DOOR command is supported.

CWA 14050-28:2003 (E)

10

bCashBox
This field is only applicable to CIM types WFS_CIM_TELLERBILL and
WFS_CIM_TELLERCOIN. It specifies whether or not the Tellers have been assigned a Cash Box.

fwIntermediateStacker
Specifies the number of items the intermediate stacker for Cash-In can hold. Zero means that there
is no intermediate stacker for Cash-In available.

bItemsTakenSensor
Specifies whether or not the CIM can detect when items at the exit position are taken by the user. If
set to TRUE the service provider generates an accompanying WFS_SRVE_CIM_ITEMS_TAKEN
event. If set to FALSE this event is not generated. This field relates to all output positions.

bItemsInsertedSensor
Specifies whether the CIM has the ability to detect when items have been inserted by the user. If set
to TRUE the service provider generates an accompanying WFS_SRVE_CIM_ITEMSINSERTED
event. If set to FALSE this event is not generated. This field relates to all input positions.

fwPositions
Specifies the CIM input and output positions which are available as a combination of the following
flags:
Value Meaning
WFS_CIM_POSINLEFT Left input position.
WFS_CIM_POSINRIGHT Right input position.
WFS_CIM_POSINCENTER Center input position.
WFS_CIM_POSINTOP Top input position.
WFS_CIM_POSINBOTTOM Bottom input position.
WFS_CIM_POSINFRONT Front input position.
WFS_CIM_POSINREAR Rear input position.
WFS_CIM_POSOUTLEFT Left output position.
WFS_CIM_POSOUTRIGHT Right output position.
WFS_CIM_POSOUTCENTER Center output position.
WFS_CIM_POSOUTTOP Top output position.
WFS_CIM_POSOUTBOTTOM Bottom output position.
WFS_CIM_POSOUTFRONT Front output position.
WFS_CIM_POSOUTREAR Rear output position

fwExchangeType
Specifies the type of cash unit exchange operations supported by the CIM. Values are a
combination of the following flags:
Value Meaning
WFS_CIM_EXBYHAND The CIM supports manual replenishment either by

emptying the cash unit by hand or by replacing the cash
unit.

WFS_CIM_EXTOCASSETTES The CIM supports moving items from the replenishment
cash unit to the bill cash units.

WFS_CIM_CLEARRECYCLER The CIM supports the emptying of recycle cash units.
WFS_CIM_DEPOSITINTO The CIM supports moving items from the deposit entrance

to the bill cash units.

fwRetractAreas
Specifies the areas to which items may be retracted. This field will be set to a combination of the
following flags:
Value Meaning
WFS_CIM_RA_RETRACT Items may be retracted to the retract cash unit.
WFS_CIM_RA_TRANSPORT Items may be retracted to the transport.
WFS_CIM_RA_STACKER Items may be retracted to the intermediate stacker.
WFS_CIM_RA_BILLCASSETTES Items may be retracted to recycle cassettes.
WFS_CIM_RA_NOTSUPP The CIM does not have the ability to retract.

fwRetractTransportActions
Specifies the actions which may be performed on items which have been retracted to the transport.
This field will be one of the following values:

CWA 14050-28:2003 (E)

11

Value Meaning
WFS_CIM_RETRACT The items may be retracted to a retract cash unit.
WFS_CIM_NOTSUPP The CIM does not have the ability to retract from the

transport.

fwRetractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker. If
the device does not have a retract capability this field will be WFS_CIM_NOTSUPP. Otherwise is
will be set to one of the following values:
Value Meaning
WFS_CIM_PRESENT The items may be moved to the exit position.
WFS_CIM_RETRACT The items may be retracted to a retract cash unit.
WFS_CIM_NOTSUPP The CIM does not have the ability to retract from the stacker.

lpszExtra
A string of vendor-specific information consisting of “key=value” sub-strings. Each sub-string is
null-terminated, with the final sub-string terminating with two null characters.

The parameter for paragraph 6 handling [Ref. 4] is reported in lpszExtra as follows:
P6=1 => paragraph 6 handling and only level 2 notes will not be returned to the customer

in a cash in transaction
P6=2 => paragraph 6 handling and level 2 and level 3 notes will not be returned to the

customer in a cash in transaction

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra parameter may not be device or vendor-independent.

4.2 WFS_INF_CIM_CASH_UNIT_INFO

Description This command is used to obtain information about the status and contents of the cash in units and
recycle units in the CIM.

Where a logical cash in unit or recycle unit is configured but there is no corresponding physical cash
unit currently present in the device, information about the missing cash in unit or recycle unit will still
be returned in the lppCashIn field of the output parameter. The status of the cash in unit or recycle
unit will be reported as WFS_CIM_STATCUMISSING.

It is possible that one logical cash in unit or recycle unit may be associated with more than one
physical cash unit. In this case, the number of cash unit structures returned in lpCashInfo will reflect
the number of logical cash in units or recycle units in the CIM. That is, if a system contains four
physical cash in units but two of these are treated as one logical cash in unit, lpCashInfo will contain
information about the three logical cash in units and a usCount of 3. Information about the physical
cash in unit(s) or recycle unit(s) associated with a logical cash in unit or recycle unit is contained in
the WFSCDMCASHUNIT structure representing the logical cash in unit or recycle unit.

It is also possible that multiple logical cash in units or recycle units may be associated with one
physical cash unit. This should only occur if the physical cash unit is capable of handling this
situation, i.e. if it can store multiple denominations and report meaningful count and replenishment
information for each denomination. In this case the information returned in lpCashInfo will again
reflect the number of logical cash in units or recycle units in the CIM.

Counts
The value of the ulCount field of the WFSCIMNOTENUMBER structure is a software count and
therefore may not represent the actual number of items in the cash unit.

Threshold Events
The threshold event, WFS_USRE_CIM_CASHUNITTHRESHOLD, can be triggered either by
hardware sensors in the device or by the ulCount reaching the ulMaximum value.

CWA 14050-28:2003 (E)

12

The application can check if the device has this capability by querying the bHardwareSensors field of
the physical cash unit structure. If any of the physical cash units associated with the logical cash unit
have this capability, then threshold events based on hardware sensors may be triggered.

In the situation where the cash unit is associated with multiple physical cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED can be generated when each of the physical cash
units reaches the threshold. When the final physical cash unit reaches the threshold, the
WFS_USRE_CIM_CASHUNITTHRESHOLD event will be are generated.

Exchanges
If a physical cash unit is removed when the device is not in the exchange state the status of the
physical cash unit will be set to WFS_CIM_STATMANIP and the values of the physical cash unit
prior to its’ removal will be returned in any subsequent WFS_INF_CIM_CASH_UNIT_INFO
command. The physical cash unit will not be used in any operation. The application must perform an
exchange operation specifying the new values for the physical cash unit in order to recover the
situation.

Recyclers
Through the CIM interface a service provider does not report cash-out cash units and through the
CDM interface it does not report cash in cash units. But both device classes report the recycling cash
units (WFS_CIM_TYPERECYCLING).

Input Param None.

Output Param LPWFSCIMCASHINFO lpCashInfo;

typedef struct _wfs_cim_cash_info
{

USHORT usCount;
LPWFSCIMCASHIN * lppCashIn;

} WFSCIMCASHINFO, *LPWFSCIMCASHINFO;

usCount
Number of WFSCIMCASHIN structures returned in lppCashIn.

lppCashIn
Pointer to an array of pointers to WFSCIMCASHIN structures:

typedef struct _wfs_cim_cash_in
{
USHORT usNumber;
DWORD fwType;
DWORD fwItemType;
CHAR cUnitID[5];
CHAR cCurrencyID[3];
ULONG ulValues;
ULONG ulCashInCount;
ULONG ulCount;
ULONG ulMaximum;
USHORT usStatus;
BOOL bAppLock;
LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
USHORT usNumPhysicalCUs;
LPWFSCIMPHCU * lppPhysical;
LPSTR lpszExtra;
} WFSCIMCASHIN, *LPWFSCIMCASHIN;

usNumber
Index number of the cash unit structure. Each structure has a unique logical number starting with
a value of one (1) for the first structure, and incrementing by one for each subsequent structure.

fwType
Specifies the type of cash unit takes one of the following values:
Value Meaning
WFS_CIM_TYPERECYCLING Recycle cash unit. This type of cash unit is present

only when the device is a Cash Recycler. It can be
used for cash dispensing.

WFS_CIM_TYPECASHIN Cash-In cash unit.

CWA 14050-28:2003 (E)

13

WFS_CIM_TYPEREPCONTAINER Replenishment container. A cash unit can be refilled
from a replenishment container.

WFS_CIM_TYPERETRACTCASSETTE Retract cash unit.

fwItemType
Specifies the type of items the Cash Unit takes as a combination of the following flags:
Value Meaning
WFS_CIM_CITYPALL The cash in unit takes all banknote types.
WFS_CIM_CITYPUNFIT The cash in unit takes all unfit banknotes.
WFS_CIM_CITYPINDIVIDUAL The cash in unit or recycler takes all types of bank notes

specified in an individual list
WFS_CIM_CITYPLEVEL2 Paragraph 6 level 2 notes are stored in this cash in unit
WFS_CIM_CITYPLEVEL3 Paragraph 6 level 3 notes are stored in this cash in unit.

cUnitID
The Cash Unit Identifier.

cCurrencyID
A three character array storing the ISO format Currency ID [see Ref. 2]. This value will be an
array of three ASCII 0x20h characters for cash units which contain items of more than one
currency type or items to which currency is not applicable. If the wStatus field for this cash unit
is WFS_CIM_STATCUNOVAL it is the responsibility of the application to assign a value to
this field.

ulValues
Supplies the value of a single item in the cash unit. This value is expressed in minimum dispense
units. If the cCurrencyID field for this cash unit is empty then this field will contain 0. If the
wStatus field for this cash unit is WFS_CIM_STATCUNOVAL it is the responsibility of the
application to assign a value to this field.

ulCashInCount
Count of items that have entered the cash unit. This counter is incremented whenever a bill
enters the physical cash unit for any reason. This value is persistent.

ulCount
Total number of notes of all types in the cash unit. If the cash unit is a recycle cash unit then this
value may not be the same as the value of ulCashInCount, the value may be decremented as a
result of a dispense operation on the CDM interface. For a retract cash unit this value specifies
the number of retracts. This value will be increased by one for every cash in transaction storing
level 2 notes. This value is persistent.

ulMaximum
When the ulCount reaches this value the threshold event
WFS_USRE_CIM_CASHUNITTHRESHOLD will be generated. If this value is non-0 then
hardware sensors in the device do not trigger threshold events.

usStatus
Describes the status of the cash unit as one of the following values:
Value Meaning
WFS_CIM_STATCUOK The cash unit is in a good state.
WFS_CIM_STATCUFULL The cash in cash unit or recycle unit is full.
WFS_CIM_STATCUHIGH The cash in cash unit is almost full (threshold).
WFS_CIM_STATCUEMPTY The recycle unit is empty.
WFS_CIM_STATCUINOP The cash in cash unit or recycle unit is inoperative.
WFS_CIM_STATCUMISSING The cash in cash unit is missing.
WFS_CIM_STATCUNOVAL The values of the specified cash unit are not available.

This can be the case when the cash unit is changed
without using the operator functions.

WFS_CIM_STATCUNOREF There is no reference value available for the notes in this
cash unit. The cash unit has not been configured.

WFS_CIM_STATCUMANIP The cash unit has been changed when the device was not
in the exchange state. Items cannot be accepted into this
cash unit.

bAppLock

CWA 14050-28:2003 (E)

14

This field does not apply to retract cash units. If this value is TRUE items cannot be accepted
into the cash unit. This parameter is ignored if the hardware does not support this.

lpNoteNumberList
Pointer to a WFSCIMNOTENUMBERLIST structure. If the cash unit is a retract cash unit this
pointer will be NULL except when the retract cash unit accepts level 2 notes. In this case the
number of level 2 notes is returned.

typedef struct _wfs_cim_note_number_list
{
USHORT usNumOfNoteNumbers;
LPWFSCIMNOTENUMBER* lppNoteNumber;
} WFSCIMNOTENUMBERLIST, *LPWFSCIMNOTENUMBERLIST;

usNumOfNoteNumbers
Number of banknote types the cash unit contains, i.e. the size of the lppNoteNumber list.

lppNoteNumber
List of banknote numbers the cash unit contains. A pointer to an array of pointers to
WFSCIMNOTENUMBER structures:

typedef struct _wfs_cim_note_number
{
USHORT usNoteID;
ULONG ulCount;
} WFSCIMNOTENUMBER, *LPWFSCIMNOTENUMBER;

usNoteID
Identification of note type.

ulCount
Actual count of items. This value is persistent. The value is incremented each time items are
moved to a cash unit by a WFSExecute command. In the case of recycle cash units this
count is decremented whenever items leave the cash unit.

usNumPhysicalCUs
This value indicates the number of physical cash unit structures returned. It must be at least 1.

lppPhysical
Pointer to an array of pointers to physical cash unit structures:

typedef struct _wfs_cim_physicalcu
{
LPSTR lpPhysicalPositionName;
CHAR cUnitID[5];
ULONG ulCashInCount;
ULONG ulCount;
ULONG ulMaximum;
USHORT usPStatus;
BOOL bHardwareSensors;
LPSTR lpszExtra;
} WFSCIMPHCU, * LPWFSCIMPHCU;

lpPhysicalPositionName
A name identifying the physical location of the cash unit within the CIM. This field can be
used by CIMs which are compound with a CDM to identify shared cash units.

cUnitID
A 5 character array uniquely identifying the physical cash unit.

ulCashInCount
Count of items that have entered the cash in unit. This counter is incremented whenever a bill
enters the physical cash unit for any reason. This value is persistent.

ulCount
Actual count of items in the physical cash unit. If the cash unit is a recycle cash unit then this
value may not be the same as the value of ulCashInCount. This value is persistent.

ulMaximum
Maximum count of items in the physical cash unit. This is only for informational purposes.
No threshold event will be generated.

CWA 14050-28:2003 (E)

15

usPStatus
Supplies the status of the physical cash unit as one of the following values:
Value Meaning
WFS_CIM_STATCUOK The cash unit is in a good state.
WFS_CIM_STATCUFULL The cash unit is full.
WFS_CIM_STATCUHIGH The cash unit is almost full (nearing the threshold defined

by ulMaximum).
WFS_CIM_STATCULOW The cash unit is almost empty (nearing the threshold

defined by ulMinimum).
WFS_CIM_STATCUEMPTY The cash unit is empty.
WFS_CIM_STATCUINOP The cash unit is inoperative.
WFS_CIM_STATCUMISSING The cash unit is missing.
WFS_CIM_STATCUNOVAL The values of the specified cash unit are not available.
WFS_CIM_STATCUNOREF There is no reference value available for the notes in this

cash unit. The cash unit has not been configured.
WFS_CIM_STATMANIP The cash unit has been changed when the device was not

in the exchange state.

bHardwareSensors
Specifies whether or not threshold events can be generated based on hardware sensors in the
device. If this value is TRUE for any of the physical cash units related to a logical cash unit
then threshold events may be generated based on hardware sensors as opposed to logical
counts.

lpszExtra
A string of vendor-specific information about the physical cash unit consisting of “key=value”
sub-strings. Each sub-string is null-terminated, with the final sub-string terminating with two
null characters.

lpszExtra
A string of vendor-specific information about the logical cash unit consisting of “key=value” sub-
strings. Each sub-string is null-terminated, with the final sub-string terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 14050-28:2003 (E)

16

5. New Execute Commands

5.1 WFS_CMD_CIM_CREATE_P6_SIGNATURE

Description This command is used to create a reference signature (normally a level 3 note) that was checked and
regarded as a forgery. The reference can be compared with the available signatures of the cash in
transactions to track back the customer.

When this command is executed, the CIM waits for a note to be inserted at the input position,
transports the note to the recognition module, creates the signature and then returns the note to the
output position.
The application may have to execute this command repeatedly to make sure that all possible
signatures are captured. If no recognition software is loaded into the recognition module usNoteId
will be zero. If the note is not transported to the recognition module (e.g. bad transport out of input
position) a NULL pointer is returned.

Input Param None.

Output Param LPWFSCIMP6SIGNATURE lpP6Signature;

typedef struct _wfs_cim_P6_signature
{

USHORT usNoteId;
ULONG ulLength;
DWORD dwOrientation;
LPVOID lpSignature;

} WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

usNoteID
Identification of note type.

ulLength
Length of the signature in byte.

dwOrientation
Orientation of the entered banknote. Specified as one of the following flags:
Value Meaning
WFS_CIM_ORFRONTTOP If note is inserted wide side as the leading edge, the note

was inserted with the front image facing up and the top
edge of the note was inserted first. If the note is inserted
short side as the leading edge, the note was inserted with
the front image face up and the left edge was inserted
first.

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the leading edge, the note
was inserted with the front image facing up and the
bottom edge of the note was inserted first. If the note is
inserted short side as the leading edge, the note was
inserted with the front image face up and the right edge
was inserted first.

WFS_CIM_ORBACKTOP If note is inserted wide side as the leading edge, the note
was inserted with the back image facing up and the top
edge of the note was inserted first. If the note is inserted
short side as the leading edge, the note was inserted with
the back image face up and the left edge was inserted
first.

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the leading edge, the note
was inserted with the back image facing up and the
bottom edge of the note was inserted first. If the note is
inserted short side as the leading edge, the note was
inserted with the back image face up and the right edge
was inserted first.

CWA 14050-28:2003 (E)

17

WFS_CIM_ORUNKNOWN The orientation for the inserted note can not be
determined

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine the orientation

lpSignature
Pointer to the returned signature.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_TOOMANYITEMS There was more than one banknote inserted for

creating a signature.
WFS_ERR_CIM_NOITEMS There was no banknote to create a signature.
WFS_ERR_CIM_CASHINACTIVE A Cash-In transaction is active.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CIM_INPUTREFUSE The inserted item was no banknote or the note was not

recognised.
WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted into the cash in position by

the user.
WFS_SRVE_CIM_ITEMSTAKEN Items returned to the user been taken.
WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be taken.

Comments None.

CWA 14050-28:2003 (E)

18

6.0 Changes to existing Execute commands

6.2 WFS_CMD_CIM_CASH_IN

Description This command moves items into the CIM from an input position.

The items may pass through the banknote reader for identification. Failure to identify items does not
mean that the command has failed - even if some or all of the items are rejected by the banknote
reader, the command may return WFS_SUCCESS. In this case a WFS_EXEE_CIM_INPUTREFUSE
event will be sent to report the rejection.

If the device does not have a banknote reader then the output parameter will be NULL.

If the device has a cash-in stacker then this command will cause inserted items to be moved there.
Items will be held on the stacker until the current Cash-In Transaction is either cancelled by
WFS_CMD_CIM_ROLLBACK or confirmed by WFS_CMD_CIM_CASH_IN_END. If there is no
cash-in stacker then this command will move items directly to the cash units and
WFS_CMD_CIM_ROLLBACK will not be supported.

The bShutterControl field of the LPWFSCIMCAPS structure returned from the
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by
this command or whether the application must explicitly open and close the shutter using the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands.

It is possible that a device may divide bill or coin accepting into a series of sub-operations under
hardware control. In this case a WFS_EXEE_CIM_SUBCASHIN event may be sent after each sub-
operation, if the hardware capabilities allow it.

Input Param None.

Output Param LPWFSCIMNOTENUMBERLIST lpNoteNumberList;

lpNoteNumberList
List of banknote numbers which have been identified and accepted during execution of this
command. If the whole input was refused then this parameter will be NULL and the
WFS_EXEE_CIM_INPUTREFUSE event will be generated. If only part of the input was refused
then this parameter will contain the banknote numbers of the accepted items and the
WFS_EXEE_CIM_INPUTREFUSE event will be generated. For a description of the
LPWFSCIMNOTENUMBERLIST structure see the WFS_INF_CIM_CASH_UNIT_INFO
command.

The lpNoteNumberList contains all notes accepted including any level 2 or level 3 notes found
during the Cash In operation.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a Cash Unit. A

WFS_EXEE_CIM_CASHUNITERROR event
will be sent with the details.

WFS_ERR_CIM_TOOMANYITEMS There were too many items inserted for cash
in. The Cash-In stacker is full.

WFS_ERR_CIM_NOITEMS There were no items to cash in.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM service is in an exchange state.
WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close.
WFS_ERR_CIM_NOCASHINACTIVE There is no Cash-In transaction active.
WFS_ERR_CIM_POSITION_NOT_EMPTY The output position is not empty so a cash in is

not possible.

CWA 14050-28:2003 (E)

19

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a Cash Unit.
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected.
WFS_EXEE_CIM_INPUTREFUSE A part or all of the amount of the cash in order was

refused.
WFS_EXEE_CIM_NOTEERROR A note detection error occurred.
WFS_EXEE_CIM_SUBCASHIN A Cash In sub-operation has completed. If the Cash In

operation has been divided up into a series of sub-
operations under hardware control this event is
generated each time one of the sub-cash-in operations
completes successfully. It may be used for progress
reporting.

WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted into the cash in position by
the user.

Comments None.

6.3 WFS_CMD_CIM_CASH_IN_ROLLBACK

Description A Cash-In operation has to be handled as a transaction that can be rolled back if a difference occurs
between the amount counted by the CIM and the amount inserted. This command is used to roll back
a Cash-In transaction. It causes all the notes cashed in since the last
WFS_CMD_CIM_CASH_IN_START command to be returned to the customer.

This command ends the current Cash-In Transaction. The Cash-In transaction is ended even if this
command does not complete successfully.

The bShutterControl field of the LPWFSCIMCAPS structure returned from the
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by
this command or whether the application must explicitly control the shutter using the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands.

Input Param None.

Output Param NULL will be returned unless there were level 2 or level 3 notes inserted in the cash in transaction
that are not returned to the customer because of paragraph 6 handling.

LPWFSCIMCASHINFO lpCashInfo.

lpCashInfo
List of cash units that have taken banknotes and the type of banknotes they have taken. For a
description of the WFSCIMCASHINFO structure see the definition of the
WFS_INF_CIM_CASH_UNIT_INFO command.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a Cash Unit. A

WFS_EXEE_CIM_CASHUNITERROR event will
be sent with the details.

WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state.
WFS_ERR_CIM_NOCASHINACTIVE There is no current Cash-In Transaction.
WFS_ERR_CIM_POSITION_NOT_EMPTY The input or output position is not empty.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a result
of this command:

Value Meaning
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a Cash Unit.

CWA 14050-28:2003 (E)

20

WFS_SRVE_CIM_ITEMSTAKEN Either the items are available to the user or
have been removed by the user, depending on
the capability of the CIM.

Comments None.

6.4 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS

Description This command is used to alter the banknote types a cash in unit or recycle unit can take. The cash
units which are affected by this command must be empty.

The values set by this command are persistent.

Input Param LPWFSCIMCASHINTYPE * lppCashInType;

Pointer to a NULL terminated array of pointers to cash in type structures. Only the cash units which
are to be configured should be sent in this parameter:

typedef struct _wfs_cim_cash_in_type
{

USHORT usNumber;
DWORD dwType;
LPUSHORT lpusNoteIDs;

} WFSCIMCASHINTYPE, * LPWFSCIMCASHINTYPE;

usNumber
Logical number of the cash unit.

dwType
Type of cash in unit or recycle unit. Specified as a combination of the following flags:
Value Meaning
WFS_CIM_CITYPALL The cash in unit accepts all banknote types.
WFS_CIM_CITYPUNFIT The cash in unit accepts all unfit banknotes.
WFS_CIM_CITYPINDIVIDUAL The cash in unit or recycle unit accepts all types of bank

notes specified in the following list.
WFS_CIM_CITYPLEVEL2 Paragraph 6 level 2 notes are stored in this cash in unit
WFS_CIM_CITYPLEVEL3 Paragraph 6 level 3 notes are stored in this cash in unit

lpusNoteIDs
Pointer to a NULL terminated list of unsigned shorts which contains the note IDs of the bank notes
the cash in cash unit or recycle unit can take.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCASHUNIT Invalid cash unit ID. This error will also be created

if an invalid logical number of a cash unit is given.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM service is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CIM_CASHUNITINFOCHANGED A cash unit was changed.

Comments None.

CWA 14050-28:2003 (E)

21

7. New Events

7.1 WFS_EXEE_CIM_INPUT_P6:

Description This execute event is generated if level 2 and / or level 3 notes are detected during the cash in
operation. (WFS_CMD_CIM_CASH_IN).

Event Param LPWFSCIMP6INFO *lppP6Info
Pointer to a null terminated array of pointers to p6Info structures. One structure for every level.

For the description of the structure see WFS_INF_CIM_GET_P6_INFO

Comments None.

CWA 14050-28:2003 (E)

22

7.0 Changes to existing Events

There are no changes to existing events.

CWA 14050-28:2003 (E)

23

8.0 New ATM Cash-In Transaction Flows

8.1 OK Transaction P6
This section describes a possible cash in transaction with P6 where everything works fine and level2 /level 3 notes are
inserted.

Customer Application XFS Command
1. Select function

Cash-In
Open the shutter of the input tray WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_OPEN_SHUTTER
2. Ask the customer to insert money
3. WFS_CMD_CIM_CLOSE_SHUTTER

WFS_CMD_CIM_CASH_IN
(WFS_CIM_POSBILLINPUT)

4. Insert money WFS_SRVE_CIM_ITEMSINSERTED,
WFS_EXE_CIM_INPUTP6 and completion of
WFS_CMD_CIM_CASH_IN

5 Get number of P6 notes WFS_INF_CIM_GET_P6_INFO
6 Display the amount recognized so

far and inform customer that P6
notes are inserted

7 Store signatures of P6 notes with
customer data.

Call WFS_INF_CIM_GET_P6_SIGNATURE
once for every signature.

8. Ask the customer for further
actions:

If customer wants to insert more
money:
Repeat from 2.

If customer wants to finish the
transaction:
Continue with 9.

If customer wants to get back all
items inserted so far see table
“cancellation by customer“

9. Transport the money into the cash
units.
(RECYCLE_UNIT/CASHINBOX)

WFS_CMD_CIM_CASH_IN_END

10. At this point the application should
decide how to credit the
appropriate money to the
customers account, and inform the
customer about the amounts of
level 2 and 3 notes.

11 End of Transaction

CWA 14050-28:2003 (E)

24

9.0 Changes to existing ATM Cash In Transaction Flows

The following table describes the flow of a cash in transaction on a Self Service CIM:

9.1 OK Transaction
This section describes a normal cash in transaction where everything works fine.

Customer Application XFS Command
1. Select function

Cash-In
Open the shutter of the input tray WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_OPEN_SHUTTER
2. Ask the customer to insert money
3. WFS_CMD_CIM_CLOSE_SHUTTER

WFS_CMD_CIM_CASH_IN
(WFS_CIM_POSBILLINPUT)

4. Insert money WFS_SRVE_CIM_ITEMSINSERTED and
completion of WFS_CMD_CIM_CASH_IN

5. Display the amount recognized so
far

6. Ask the customer for further
actions:

If customer wants to insert more
money:
Repeat from 2.

If customer wants to finish the
transaction:
Continue with 7.

If customer wants to get back all
items inserted so far see table
“cancellation by customer“

7. Transport the money into the cash
units
(RECYCLE_UNIT/CASHINBOX)

WFS_CMD_CIM_CASH_IN_END

8. Credit the money to the customers
account

9. End of Transaction

9.2 Cancellation by Customer
This section describes how an application should react when the customer wants all the items to be returned after
recognition.

Customer Application XFS Command
1.-6. See OK

Transaction
7. Selection : Return

all the items
8. Transport the items recognized to

the output tray and ask for removal
of the money. And inform
customer that the P6 notes are
stored in the ATM.

WFS_CMD_CIM_CASH_IN_ROLLBACK with
output data in case of P6 notes detected
WFS_CMD_CIM_OPEN_SHUTTER

9. Take the money
from the output
tray

WFS_SRVE_CIM_ITEMSTAKEN

10. End of Transaction

CWA 14050-28:2003 (E)

25

9.3 Stacker becomes full
This section describes how an application should react when the stacker becomes full during the transaction.

Customer Application XFS Command
1.-3. See OK

Transaction
4. Insert money WFS_SRVE_CIM_ITEMSINSERTED and

completion of WFS_CMD_CIM_CASH_IN with t
error code WFS_ERR_CIM_TOOMANYITEMS.

5. Display the amount recognized so
far and tell the customer that the
stacker is full

6. Ask the customer for further
actions:

If customer wants to deposit the
amount:
Continue with 7.

If customer wants to get back all
items inserted so far see table
“cancellation by customer“

7. Transport the money into the cash
units
(RECYCLE_UNIT/CASHINBOX)

WFS_CMD_CIM_CASH_IN_END

8. Ask the customer if customer
wants to deposit more money.

If customer wants to deposit more:
Repeat from 1.

If customer wants to finish the
transaction:
Continue with 9.

9. Credit the money to the customers
account

10. End of Transaction

CWA 14050-28:2003 (E)

26

9.4 Bill recognition error

This section describes what an application should do when some of the items could not be recognized (e.g. torn or dirty
items) and what sort of interactions with the customer is necessary to complete the transaction.
Please notice that it is only possible to transport the recognized money into the cash in units when the output and the
input slot is empty.
So long as the command WFS_CMD_CIM_CASH_IN_END was not issued, the money can be returned to the customer
by issuing a WFS_CMD_CIM_CASH_IN_ROLLBACK command. Later returning the money is not longer possible,
because it is transported from the stacker to the cash units from where it cannot be taken.

Customer Application XFS Command
1.-3. See OK

Transaction
4. Insert money WFS_SRVE_CIM_ITEMSINSERTED
5. WFS_EXEE_CIM_INPUTREFUSE

Some of the items could not be recognized (They
are moved to the output tray) and completion of
WFS_CMD_CIM_CASH_IN

6. WFS_CMD_CIM_OPEN_SHUTTER
7. Tell the customer that the bills

were not recognized and that
customer should take the bills.

8. Take the money
from the output
tray

WFS_SRVE_CIM_ITEMSTAKEN

9. Ask the customer for further
actions:

If customer wants to insert more
money:
Repeat from 2.

If customer wants to finish the
transaction:
Continue with 10.

If customer wants to get back all
items inserted so far see table
“cancellation by customer“

10. Credit the money to the customers
account

11. End of Transaction

CWA 14050-28:2003 (E)

27

9.5 Implicit Control Of the Shutter by the Service Provider – OK Transaction

The following table describes the chronological steps taken in the flow of a Cash In transaction where the Shutter is
implicitly controlled by the Service Provider. In this case the WFS_CMD_CIM_OPEN_SHUTTER and
WFS_CMD_CIM_CLOSE_SHUTTER commands are not used:

Customer Application XFS Command
1. Customer selects

Cash In operation.
2. WFS_CMD_CIM_CASH_IN_START

command issued.
3. The service provider opens the input shutter, then t

WFS_CMD_CIM_CASH_IN_START command
completes.

4. Ask customer to insert money into
the input shutter then confirm.

5. Customer inserts
money then
confirms.

6. WFS_CMD_CIM_CASH_IN command issued.
7. The service provider closes the input shutter then

begins bill recognition.
If any bills are not recognized a
WFS_EXEE_CIM_INPUT_REFUSED event is
posted. The unrecognized notes are returned to
the output position and the output shutter is
opened.
The service provider opens the input shutter on
completion for another Cash In operation.

8. The WFS_CMD_CIM_CASH_IN command
completes.

9. Display number of bills and/or
amount recognized and whether
any bills were refused. Ask
customer if another Cash In
operation is required.

10. If customer selects
another Cash In
operation then go
to step 4.
If customer selects
end of Cash In
Transaction go to
step 11.

11. WFS_CMD_CIM_CASH_IN_END command
issued.

12. Service Provider closes the input shutter and if
necessary the output shutter.

13. WFS_CMD_CIM_CASH_IN_END command
completes.

14. End of transaction.

CWA 14050-28:2003 (E)

28

9.6 Implicit Control Of the Shutter by the Service Provider – RollBack

The following table describes the chronological steps taken in the flow of a Cash In transaction which terminates with a
RollBack command. The Shutter is implicitly controlled by the Service Provider. In this case the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not used:

Customer Application XFS Command
1.-9. See OK

Transaction
10. Customer selects

Cancel.
11. WFS_CMD_CIM_CASH_IN_ROLLBACK

command issued. The Service Provider closes the
input shutter and if necessary the output shutter. Al
notes cashed in since the last
WFS_CMD_CIM_CASH_IN_START operation a
returned to the customer then the Shutter is opened
again to display the bills to the customer.

12. WFS_CMD_CIM_CASH_IN_ROLLBACK
command completes.

13. Customer takes
bills.

14. WFS_SRVE_CIM_ITEMSTAKEN event is sent. T
Service Provider closes the Shutter.

15. End of transaction.

CWA 14050-28:2003 (E)

29

9.7 Implicit Control Of the Shutter– WFS_EXEE_CIM_SUBCASHIN event

The following table describes the chronological steps taken in the flow of a Cash In transaction where the Cash In
operation is subdivided into a number of logical operations under hardware control, in this case a
WFS_EXEE_CIM_SUBCASHIN event is generated for each sub Cash In operation. This may be the case for instance
where a device does its coin or bill recognition in batches of 25, in this case the Service Provider would post a
WFS_EXEE_CIM_SUBCASHIN event each time 25 coins were processed. In this example the shutter is implicitly
controlled by the Service Provider. In this case the WFS_CMD_CIM_OPEN_SHUTTER and
WFS_CMD_CIM_CLOSE_SHUTTER commands are not used:

Customer Application XFS Command
1.-6. See OK

Transaction
7. The service provider closes the input shutter then

begins bill or coin recognition.

The device processes the bills or coins in
batches. Each time a batch is completed a
WFS_EXEE_CIM_SUBCASHIN event is posted
then the Cash In operation continues.

The service provider opens the input shutter on
completion for another Cash In operation.

8. The WFS_CMD_CIM_CASH_IN command
completes.

9. Display number of bills and/or
amount recognized and whether
any bills were refused. Ask
customer if another Cash In
operation is required, if so then go
to step 4, otherwise proceed to step
10.

10. WFS_CMD_CIM_CASH_IN_END command
issued.

11. Service Provider closes the input shutter and if
necessary the output shutter.

12. WFS_CMD_CIM_CASH_IN_END command
completes.

13. End of transaction.

CWA 14050-28:2003 (E)

30

9. C - Header file

/**
* *
* xfscim.h XFS - Cash Acceptor (CIM) definitions *
* *
* Version 3.02 (08/05/03) *
* *
**/

#ifndef __INC_XFSCIM__H
#define __INC_XFSCIM__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack (push, 1)

/* values of WFSCIMCAPS.wClass */

#define WFS_SERVICE_CLASS_CIM (13)
#define WFS_SERVICE_CLASS_VERSION_CIM 0x0203
#define WFS_SERVICE_CLASS_NAME_CIM "CIM"

#define CIM_SERVICE_OFFSET (WFS_SERVICE_CLASS_CIM * 100)

/* CIM Info Commands */

#define WFS_INF_CIM_STATUS (CIM_SERVICE_OFFSET + 1)
#define WFS_INF_CIM_CAPABILITIES (CIM_SERVICE_OFFSET + 2)
#define WFS_INF_CIM_CASH_UNIT_INFO (CIM_SERVICE_OFFSET + 3)
#define WFS_INF_CIM_TELLER_INFO (CIM_SERVICE_OFFSET + 4)
#define WFS_INF_CIM_CURRENCY_EXP (CIM_SERVICE_OFFSET + 5)
#define WFS_INF_CIM_BANKNOTE_TYPES (CIM_SERVICE_OFFSET + 6)
#define WFS_INF_CIM_CASH_IN_STATUS (CIM_SERVICE_OFFSET + 7)
#define WFS_INF_CIM_GET_P6_INFO (CIM_SERVICE_OFFSET + 8)
#define WFS_INF_CIM_GET_P6_SIGNATURE (CIM_SERVICE_OFFSET + 9)

/* CIM Execute Commands */

#define WFS_CMD_CIM_CASH_IN_START (CIM_SERVICE_OFFSET + 1)
#define WFS_CMD_CIM_CASH_IN (CIM_SERVICE_OFFSET + 2)
#define WFS_CMD_CIM_CASH_IN_END (CIM_SERVICE_OFFSET + 3)
#define WFS_CMD_CIM_CASH_IN_ROLLBACK (CIM_SERVICE_OFFSET + 4)
#define WFS_CMD_CIM_RETRACT (CIM_SERVICE_OFFSET + 5)
#define WFS_CMD_CIM_OPEN_SHUTTER (CIM_SERVICE_OFFSET + 6)
#define WFS_CMD_CIM_CLOSE_SHUTTER (CIM_SERVICE_OFFSET + 7)
#define WFS_CMD_CIM_SET_TELLER_INFO (CIM_SERVICE_OFFSET + 8)
#define WFS_CMD_CIM_SET_CASH_UNIT_INFO (CIM_SERVICE_OFFSET + 9)
#define WFS_CMD_CIM_START_EXCHANGE (CIM_SERVICE_OFFSET + 10)
#define WFS_CMD_CIM_END_EXCHANGE (CIM_SERVICE_OFFSET + 11)
#define WFS_CMD_CIM_OPEN_SAFE_DOOR (CIM_SERVICE_OFFSET + 12)
#define WFS_CMD_CIM_RESET (CIM_SERVICE_OFFSET + 13)
#define WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS (CIM_SERVICE_OFFSET + 14)
#define WFS_CMD_CIM_CONFIGURE_NOTETYPES (CIM_SERVICE_OFFSET + 15)
#define WFS_CMD_CIM_CREATE_P6_SIGNATURE (CIM_SERVICE_OFFSET + 16)

/* CIM Messages */

#define WFS_SRVE_CIM_SAFEDOOROPEN (CIM_SERVICE_OFFSET + 1)
#define WFS_SRVE_CIM_SAFEDOORCLOSED (CIM_SERVICE_OFFSET + 2)
#define WFS_USRE_CIM_CASHUNITTHRESHOLD (CIM_SERVICE_OFFSET + 3)
#define WFS_SRVE_CIM_CASHUNITINFOCHANGED (CIM_SERVICE_OFFSET + 4)

CWA 14050-28:2003 (E)

31

#define WFS_SRVE_CIM_TELLERINFOCHANGED (CIM_SERVICE_OFFSET + 5)
#define WFS_EXEE_CIM_CASHUNITERROR (CIM_SERVICE_OFFSET + 6)
#define WFS_SRVE_CIM_ITEMSTAKEN (CIM_SERVICE_OFFSET + 7)
#define WFS_SRVE_CIM_COUNTS_CHANGED (CIM_SERVICE_OFFSET + 8)
#define WFS_EXEE_CIM_INPUTREFUSE (CIM_SERVICE_OFFSET + 9)
#define WFS_SRVE_CIM_ITEMSPRESENTED (CIM_SERVICE_OFFSET + 10)
#define WFS_SRVE_CIM_ITEMSINSERTED (CIM_SERVICE_OFFSET + 11)
#define WFS_EXEE_CIM_NOTEERROR (CIM_SERVICE_OFFSET + 12)
#define WFS_EXEE_CIM_SUBCASHIN (CIM_SERVICE_OFFSET + 13)
#define WFS_SRVE_CIM_MEDIADETECTED (CIM_SERVICE_OFFSET + 14)
#define WFS_EXEE_CIM_INPUT_P6 (CIM_SERVICE_OFFSET + 15)

/* values of WFSCIMSTATUS.fwDevice */

#define WFS_CIM_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_CIM_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_CIM_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_CIM_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_CIM_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_CIM_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_CIM_DEVBUSY WFS_STAT_DEVBUSY

/* values of WFSCIMSTATUS.fwSafeDoor */

#define WFS_CIM_DOORNOTSUPPORTED (1)
#define WFS_CIM_DOOROPEN (2)
#define WFS_CIM_DOORCLOSED (3)
#define WFS_CIM_DOORUNKNOWN (4)

/* values of WFSCIMSTATUS.fwAcceptor */

#define WFS_CIM_ACCOK (0)
#define WFS_CIM_ACCCUSTATE (1)
#define WFS_CIM_ACCCUSTOP (2)
#define WFS_CIM_ACCCUUNKNOWN (3)

/* values of WFSCIMSTATUS.fwIntermediateStacker */

#define WFS_CIM_ISEMPTY (0)
#define WFS_CIM_ISNOTEMPTY (1)
#define WFS_CIM_ISFULL (2)
#define WFS_CIM_ISUNKNOWN (4)
#define WFS_CIM_ISNOTSUPPORTED (5)

/* values of WFSCIMSTATUS.fwStackerItems */

#define WFS_CIM_CUSTOMERACCESS (0)
#define WFS_CIM_NOCUSTOMERACCESS (1)
#define WFS_CIM_ACCESSUNKNOWN (2)
#define WFS_CIM_NOITEMS (4)

/* values of WFSCIMSTATUS.fwBankNoteReader */

#define WFS_CIM_BNROK (0)
#define WFS_CIM_BNRINOP (1)
#define WFS_CIM_BNRUNKNOWN (2)
#define WFS_CIM_BNRNOTSUPPORTED (3)

/* values of WFSCIMSTATUS.fwShutter */

#define WFS_CIM_SHTCLOSED (0)
#define WFS_CIM_SHTOPEN (1)
#define WFS_CIM_SHTJAMMED (2)
#define WFS_CIM_SHTUNKNOWN (3)
#define WFS_CIM_SHTNOTSUPPORTED (4)

/* values of WFSCIMINPOS.fwPositionStatus */

#define WFS_CIM_PSEMPTY (0)
#define WFS_CIM_PSNOTEMPTY (1)
#define WFS_CIM_PSUNKNOWN (2)

CWA 14050-28:2003 (E)

32

#define WFS_CIM_PSNOTSUPPORTED (3)

/* values of WFSCIMSTATUS.fwTransport */

#define WFS_CIM_TPOK (0)
#define WFS_CIM_TPINOP (1)
#define WFS_CIM_TPUNKNOWN (2)
#define WFS_CIM_TPNOTSUPPORTED (3)

/* values of WFSCIMINPOS.fwTransportStatus */

#define WFS_CIM_TPSTATEMPTY (0)
#define WFS_CIM_TPSTATNOTEMPTY (1)
#define WFS_CIM_TPSTATNOTEMPTYCUST (2)
#define WFS_CIM_TPSTATNOTEMPTY_UNK (3)
#define WFS_CIM_TPSTATNOTSUPPORTED (4)

/* values of WFSCIMCAPS.fwType */

#define WFS_CIM_TELLERBILL (0)
#define WFS_CIM_SELFSERVICEBILL (1)
#define WFS_CIM_TELLERCOIN (2)
#define WFS_CIM_SELFSERVICECOIN (3)

/* values of WFSCIMCAPS.fwExchangeType */
/* values of WFSCIMSTARTEX.fwExchangeType */

#define WFS_CIM_EXBYHAND (0x0001)
#define WFS_CIM_EXTOCASSETTES (0x0002)
#define WFS_CIM_CLEARRECYCLER (0x0004)
#define WFS_CIM_DEPOSITINTO (0x0008)

/* values of WFSCIMCAPS.fwRetractTransportActions */
/* values of WFSCIMCAPS.fwRetractStackerActions */

#define WFS_CIM_PRESENT (0x0001)
#define WFS_CIM_RETRACT (0x0002)
#define WFS_CIM_NOTSUPP (0x0004)

/* values of WFSCIMCASHIN.fwType */

#define WFS_CIM_TYPERECYCLING (1)
#define WFS_CIM_TYPECASHIN (2)
#define WFS_CIM_TYPEREPCONTAINER (3)
#define WFS_CIM_TYPERETRACTCASSETTE (4)

/* values of WFSCIMCASHIN.fwItemType */
/* values of WFSCIMCASHINTYPE.dwType */

#define WFS_CIM_CITYPALL (0x0001)
#define WFS_CIM_CITYPUNFIT (0x0002)
#define WFS_CIM_CITYPINDIVIDUAL (0x0004)
#define WFS_CIM_CITYPLEVEL3 (0x0008)
#define WFS_CIM_CITYPLEVEL2 (0x0010)

/* values of WFSCIMCASHIN.usStatus */
/* values of WFSCIMPHCU.usPStatus */

#define WFS_CIM_STATCUOK (0)
#define WFS_CIM_STATCUFULL (1)
#define WFS_CIM_STATCUHIGH (2)
#define WFS_CIM_STATCULOW (3)
#define WFS_CIM_STATCUEMPTY (4)
#define WFS_CIM_STATCUINOP (5)
#define WFS_CIM_STATCUMISSING (6)
#define WFS_CIM_STATCUNOVAL (7)
#define WFS_CIM_STATCUNOREF (8)
#define WFS_CIM_STATCUMANIP (9)

/* values of WFSCIMSTATUS.fwPositions */
/* values of WFSCIMCAPS.fwPositions */

CWA 14050-28:2003 (E)

33

/* values of WFSCIMINPOS.fwPosition */
/* values of WFSCIMTELLERDETAILS.fwInputPosition */
/* values of WFSCIMCASHINSTART.fwInputPosition */

#define WFS_CIM_POSNULL (0x0000)
#define WFS_CIM_POSINLEFT (0x0001)
#define WFS_CIM_POSINRIGHT (0x0002)
#define WFS_CIM_POSINCENTER (0x0004)
#define WFS_CIM_POSINTOP (0x0008)
#define WFS_CIM_POSINBOTTOM (0x0010)
#define WFS_CIM_POSINFRONT (0x0020)
#define WFS_CIM_POSINREAR (0x0040)

/* values of WFSCIMSTATUS.fwPositions */
/* values of WFSCIMCAPS.fwPositions */
/* values of WFSCIMTELLERDETAILS.fwOutputPosition */
/* values of WFSCIMCASHINSTART.fwOutputPosition */
/* values of WFSCIMOUTPUT.fwPosition */

#define WFS_CIM_POSOUTLEFT (0x0080)
#define WFS_CIM_POSOUTRIGHT (0x0100)
#define WFS_CIM_POSOUTCENTER (0x0200)
#define WFS_CIM_POSOUTTOP (0x0400)
#define WFS_CIM_POSOUTBOTTOM (0x0800)
#define WFS_CIM_POSOUTFRONT (0x1000)
#define WFS_CIM_POSOUTREAR (0x2000)

/* values of WFSCIMCASHINSTATUS.wStatus */

#define WFS_CIM_CIOK (0)
#define WFS_CIM_CIROLLBACK (1)
#define WFS_CIM_CIACTIVE (2)
#define WFS_CIM_CIRETRACT (3)
#define WFS_CIM_CIUNKNOWN (4)

/* values of WFSCIMCAPS.fwRetractAreas */
/* values of WFSCIMRETRACT.usRetractArea */

#define WFS_CIM_RA_RETRACT (0x0001)
#define WFS_CIM_RA_TRANSPORT (0x0002)
#define WFS_CIM_RA_STACKER (0x0004)
#define WFS_CIM_RA_BILLCASSETTES (0x0008)
#define WFS_CIM_RA_NOTSUPP (0x0010)
/* values of WFSCIMP6INFO.usLevel */
/* values of WFSCIMP6SIGNATURE.usLevel */

#define WFS_CIM_LEVEL_2 (2)
#define WFS_CIM_LEVEL_3 (3)

/* values of WFSCIMTELLERUPDATE.usAction */

#define WFS_CIM_CREATE_TELLER (1)
#define WFS_CIM_MODIFY_TELLER (2)
#define WFS_CIM_DELETE_TELLER (3)

/* values of WFSCIMCUERROR.wFailure */

#define WFS_CIM_CASHUNITEMPTY (1)
#define WFS_CIM_CASHUNITERROR (2)
#define WFS_CIM_CASHUNITFULL (3)
#define WFS_CIM_CASHUNITLOCKED (4)
#define WFS_CIM_CASHUNITNOTCONF (5)
#define WFS_CIM_CASHUNITINVALID (6)
#define WFS_CIM_CASHUNITCONFIG (7)
#define WFS_CIM_FEEDMODULEPROBLEM (8)

/*values of WFSCIMP6SIGNATURE. dwOrientation* /

#define WFS_CIM_ORFRONTTOP (1)

CWA 14050-28:2003 (E)

34

#define WFS_CIM_ORFRONTBOTTOM (2)
#define WFS_CIM_ORBACKTOP (3)
#define WFS_CIM_ORBACKBOTTOM (4)
#define WFS_CIM_ORUNKNOWN (5)
#define WFS_CIM_ORNOTSUPPORTED (6)

/* values of lpusReason in WFS_EXEE_CIM_INPUTREFUSE */

#define WFS_CIM_CASHINUNITFULL (1)
#define WFS_CIM_INVALIDBILL (2)
#define WFS_CIM_NOBILLSTODEPOSIT (3)
#define WFS_CIM_DEPOSITFAILURE (4)
#define WFS_CIM_COMMINPCOMPFAILURE (5)
#define WFS_CIM_STACKERFULL (6)

/* values of lpusReason in WFS_EXEE_CIM_NOTESERROR */

#define WFS_CIM_DOUBLENOTEDETECTED (1)
#define WFS_CIM_LONGNOTEDETECTED (2)
#define WFS_CIM_SKEWEDNOTE (3)
#define WFS_CIM_INCORRECTCOUNT (4)
#define WFS_CIM_NOTESTOOCLOSE (5)

/* WOSA/XFS CIM Errors */

#define WFS_ERR_CIM_INVALIDCURRENCY (-(CIM_SERVICE_OFFSET + 0))
#define WFS_ERR_CIM_INVALIDTELLERID (-(CIM_SERVICE_OFFSET + 1))
#define WFS_ERR_CIM_CASHUNITERROR (-(CIM_SERVICE_OFFSET + 2))
#define WFS_ERR_CIM_TOOMANYITEMS (-(CIM_SERVICE_OFFSET + 7))
#define WFS_ERR_CIM_UNSUPPOSITION (-(CIM_SERVICE_OFFSET + 8))
#define WFS_ERR_CIM_SAFEDOOROPEN (-(CIM_SERVICE_OFFSET + 10))
#define WFS_ERR_CIM_SHUTTERNOTOPEN (-(CIM_SERVICE_OFFSET + 12))
#define WFS_ERR_CIM_SHUTTEROPEN (-(CIM_SERVICE_OFFSET + 13))
#define WFS_ERR_CIM_SHUTTERCLOSED (-(CIM_SERVICE_OFFSET + 14))
#define WFS_ERR_CIM_INVALIDCASHUNIT (-(CIM_SERVICE_OFFSET + 15))
#define WFS_ERR_CIM_NOITEMS (-(CIM_SERVICE_OFFSET + 16))
#define WFS_ERR_CIM_EXCHANGEACTIVE (-(CIM_SERVICE_OFFSET + 17))
#define WFS_ERR_CIM_NOEXCHANGEACTIVE (-(CIM_SERVICE_OFFSET + 18))
#define WFS_ERR_CIM_SHUTTERNOTCLOSED (-(CIM_SERVICE_OFFSET + 19))
#define WFS_ERR_CIM_ITEMSTAKEN (-(CIM_SERVICE_OFFSET + 23))
#define WFS_ERR_CIM_CASHINACTIVE (-(CIM_SERVICE_OFFSET + 25))
#define WFS_ERR_CIM_NOCASHINACTIVE (-(CIM_SERVICE_OFFSET + 26))
#define WFS_ERR_CIM_POSITION_NOT_EMPTY (-(CIM_SERVICE_OFFSET + 28))
#define WFS_ERR_CIM_INVALIDRETRACTPOSITION (-(CIM_SERVICE_OFFSET + 34))
#define WFS_ERR_CIM_NOTRETRACTAREA (-(CIM_SERVICE_OFFSET + 35))

/*===*/
/* CIM Info Command Structures */
/*===*/

typedef struct _wfs_cim_inpos
{
 WORD fwPosition;
 WORD fwShutter;
 WORD fwPositionStatus;
 WORD fwTransport;
 WORD fwTransportStatus;
} WFSCIMINPOS, * LPWFSCIMINPOS;

typedef struct _wfs_cim_status
{
 WORD fwDevice;
 WORD fwSafeDoor;
 WORD fwAcceptor;
 WORD fwIntermediateStacker;
 WORD fwStackerItems;
 WORD fwBanknoteReader;
 BOOL bDropBox;
 LPWFSCIMINPOS * lppPositions;
 LPSTR lpszExtra;
} WFSCIMSTATUS, * LPWFSCIMSTATUS;

typedef struct _wfs_cim_caps

CWA 14050-28:2003 (E)

35

{
 WORD wClass;
 WORD fwType;
 WORD wMaxCashInItems;
 BOOL bCompound;
 BOOL bShutter;
 BOOL bShutterControl;
 BOOL bSafeDoor;
 BOOL bCashBox;
 BOOL bRefill;
 WORD fwIntermediateStacker;
 BOOL bItemsTakenSensor;
 BOOL bItemsInsertedSensor;
 WORD fwPositions;
 WORD fwExchangeType;
 WORD fwRetractAreas;
 WORD fwRetractTransportActions;
 WORD fwRetractStackerActions;
 LPSTR lpszExtra;
} WFSCIMCAPS, * LPWFSCIMCAPS;

typedef struct _wfs_cim_physicalcu
{
 LPSTR lpPhysicalPositionName;
 CHAR cUnitID[5];
 ULONG ulCashInCount;
 ULONG ulCount;
 ULONG ulMaximum;
 USHORT usPStatus;
 BOOL bHardwareSensors;
 LPSTR lpszExtra;
} WFSCIMPHCU, * LPWFSCIMPHCU;

typedef struct _wfs_cim_note_number
{
 USHORT usNoteID;
 ULONG ulCount;
} WFSCIMNOTENUMBER, * LPWFSCIMNOTENUMBER;

typedef struct _wfs_cim_note_number_list
{
 USHORT usNumOfNoteNumbers;
 LPWFSCIMNOTENUMBER *lppNoteNumber;
} WFSCIMNOTENUMBERLIST, * LPWFSCIMNOTENUMBERLIST;

typedef struct _wfs_cim_cash_in
{
 USHORT usNumber;
 DWORD fwType;
 DWORD fwItemType;
 CHAR cUnitID[5];
 CHAR cCurrencyID[3];
 ULONG ulValues;
 ULONG ulCashInCount;
 ULONG ulCount;
 ULONG ulMaximum;
 USHORT usStatus;
 BOOL bAppLock;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 USHORT usNumPhysicalCUs;
 LPWFSCIMPHCU * lppPhysical;
 LPSTR lpszExtra;
} WFSCIMCASHIN, * LPWFSCIMCASHIN;

typedef struct _wfs_cim_cash_info
{
 USHORT usCount;
 LPWFSCIMCASHIN *lppCashIn;
} WFSCIMCASHINFO, * LPWFSCIMCASHINFO;

typedef struct _wfs_cim_teller_info
{
 USHORT usTellerID;

CWA 14050-28:2003 (E)

36

 CHAR cCurrencyID[3];
} WFSCIMTELLERINFO, * LPWFSCIMTELLERINFO;

typedef struct _wfs_cim_teller_totals
{
 CHAR cCurrencyID[3];
 ULONG ulItemsReceived;
 ULONG ulItemsDispensed;
 ULONG ulCoinsReceived;
 ULONG ulCoinsDispensed;
 ULONG ulCashBoxReceived;
 ULONG ulCashBoxDispensed;
} WFSCIMTELLERTOTALS, * LPWFSCIMTELLERTOTALS;

typedef struct _wfs_cim_teller_details
{
 USHORT usTellerID;
 WORD fwInputPosition;
 WORD fwOutputPosition;
 LPWFSCIMTELLERTOTALS *lppTellerTotals;
} WFSCIMTELLERDETAILS, * LPWFSCIMTELLERDETAILS;

typedef struct _wfs_cim_currency_exp
{
 CHAR cCurrencyID[3];
 SHORT sExponent;
} WFSCIMCURRENCYEXP, * LPWFSCIMCURRENCYEXP;

typedef struct _wfs_cim_note_type
{
 USHORT usNoteID;
 CHAR cCurrencyID[3];
 ULONG ulValues;
 USHORT usRelease;
 BOOL bConfigured;
} WFSCIMNOTETYPE, * LPWFSCIMNOTETYPE;

typedef struct _wfs_cim_note_type_list
{
 USHORT usNumOfNoteTypes;
 LPWFSCIMNOTETYPE *lppNoteTypes;
} WFSCIMNOTETYPELIST, * LPWFSCIMNOTETYPELIST;

typedef struct _wfs_cim_cash_in_status
{
 WORD wStatus;
 USHORT usNumOfRefused;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 LPSTR lpszExtra;
} WFSCIMCASHINSTATUS, * LPWFSCIMCASHINSTATUS;

typedef struct _wfs_cim_P6_info
{
 USHORT usLevel ;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList ;
 USHORT usNumOfSignatures ;
} WFSCIMP6INFO, *LPWFSCIMP6INFO;

typedef struct _wfs_cim_get_P6_signature
{
 USHORT usLevel ;
 USHORT usIndex ;
} WFSCIMGETP6SIGNATURE, *LPWFSCIMGETP6SIGNATURE;

/*===*/
/* CIM Execute Command Structures */
/*===*/

CWA 14050-28:2003 (E)

37

typedef struct _wfs_cim_cash_in_start
{
 USHORT usTellerID;
 BOOL bUseRecycleUnits;
 WORD fwOutputPosition;
 WORD fwInputPosition;
} WFSCIMCASHINSTART, * LPWFSCIMCASHINSTART;

typedef struct _wfs_cim_retract
{
 WORD fwOutputPosition;
 USHORT usRetractArea;
 USHORT usIndex;
} WFSCIMRETRACT, * LPWFSCIMRETRACT;

typedef struct _wfs_cim_teller_update
{
 USHORT usAction;
 LPWFSCIMTELLERDETAILS lpTellerDetails;
} WFSCIMTELLERUPDATE, * LPWFSCIMTELLERUPDATE;

typedef struct _wfs_cim_output
{
 USHORT usLogicalNumber;
 WORD fwPosition;
 USHORT usNumber;
} WFSCIMOUTPUT, * LPWFSCIMOUTPUT;

typedef struct _wfs_cim_start_ex
{
 WORD fwExchangeType;
 USHORT usTellerID;
 USHORT usCount;
 LPUSHORT lpusCUNumList;
 LPWFSCIMOUTPUT lpOutput;
} WFSCIMSTARTEX, * LPWFSCIMSTARTEX;

typedef struct _wfs_cim_itemposition
{
 USHORT usNumber;
 LPWFSCIMRETRACT lpRetractArea;
 WORD fwOutputPosition;
} WFSCIMITEMPOSITION, * LPWFSCIMITEMPOSITION;

typedef struct _wfs_cim_cash_in_type
{
 USHORT usNumber;
 DWORD dwType;
 LPUSHORT lpusNoteIDs;
} WFSCIMCASHINTYPE, * LPWFSCIMCASHINTYPE;

typedef struct _wfs_cim_P6_signature
{
 USHORT usNoteId ;
 ULONG ulLength ;
 DWORD dwOrientation ;
 LPVOID lpSignature;
} WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

/*===*/
/* CIM Message Structures */
/*===*/

typedef struct _wfs_cim_cu_error
{
 WORD wFailure;
 LPWFSCIMCASHIN lpCashUnit;
} WFSCIMCUERROR, * LPWFSCIMCUERROR;

CWA 14050-28:2003 (E)

38

typedef struct _wfs_cim_counts_changed
{
 USHORT usCount;
 USHORT *lpusCUNumList;
} WFSCIMCOUNTSCHANGED, * LPWFSCIMCOUNTSCHANGED;

/* restore alignment */
#pragma pack (pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCIM__H */

